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Abstract—Haptic force fields are widely used in studies on
motor adaptation, motor retention, and motor recovery in both
healthy and impaired subjects. In the main paradigm the hand
is guided or perturbed along specific paths or channels in order
to investigate different aspects underlying the human motor con-
trol. Programming such fields for complex haptic environments
can be very challenging and is often not feasible for clinicians
and therapists. The aim of this paper is to introduce a more
intuitive and clinician-friendly programming method capable of
transforming a 2D drawing (stored as an image) into a haptic
environment or planar force field. By considering the image

intensity as a position-dependent potential field, the energy
function is approximated through locally weighted projection
regression (LWPR). Robot forces are then computed through
the gradient of the regressed potential. The proposed method is
validated with a two degrees-of-freedom planar manipulandum,
the H-Man, and a preliminary shape recognition experiment
involving blindfolded healthy subjects.

I. INTRODUCTION

In recent decades, upper extremity robots have received

increasing attention as a valuable means to understand motor

adaptation, learning, and retention in both healthy and in

impaired subjects. Despite the increasing number of devices

developed so far [1], remarkable little focus has been applied

to make the programming and control of such devices more

intuitive and therapist-friendly.

Commercially available robots usually come with a soft-

ware interface with settings that allow for the easy adjustment

of robotic assistance level, gaming/graphical user interface,

number of trials etc. However, there is very little flexibility

in terms of the types of motions that the robot and patient

can perform, with most interfaces limiting motion to point-to-

point straight-line trajectories. This limitation is a particular

challenge for therapists who lack sufficient engineering and

programming expertise required to programme more complex

and time consuming robotic force fields.

Typically, robotic force fields are programmed to reduce

or enhance movement errors. Robotic force fields are said to

be assistive or convergent whenever the robot acts in order

to reduce a given error measure (usually the lateral deviation

from a nominal path), while divergent force fields are those

which amplify motor errors [8], [10]. The most commonly

used force fields are velocity-dependent (or viscous) fields

in which the robotic action response is proportional to the

subject hand speed or position-dependent force fields by

which the robot reacts based on a position-dependent error

measure. While both fields have been employed to examine

motor control in healthy and impaired subjects, given that this

project is still in the preliminary phase, this paper will address

only the intuitive and clinician-friendly robot programming

of position-dependent force fields.

A. Force fields for impaired and healthy motor control

While planar point-to-point reaching movements per-

formed by healthy subjects are characterized by smooth and

roughly straight-line motions [2], individuals with motor and

proprioceptive impairments make slow reaching movements

that are characterised by jerky velocity profiles and high end-

point variability [3].

Assistive force fields have been used to limit the afore-

mentioned issues in impaired subjects. In [4] a canyon-like

energy function was used to stiffen up the robot end-effector

against lateral deviations from straight-line paths connecting

the starting position with eight peripheral targets. Studies that

employed convergent force fields to examine motor adap-

tation in healthy subjects have shown that the introduction

of an haptic channel subsequent to motor adaptation to

viscous fields can induce a prolonged memory retention of

the acquired force field [5]. The level of channel compliance

has also been shown to have a significant effect on the amount

of induced adaptation [6].

Because of their intrinsic nature, assistive force fields often

lead to low engagement and effort levels; both healthy and

impaired subjects tend to react passively to robot motions

and guidance [6], [9]. Error-enhancing or divergent force

fields have been proposed as a more stimulating alternative

as prediction errors (between the expected and executed

motions) are thought to trigger motor adaptation and learning

processes [7]–[10].

B. Programming Haptic Force Fields

Most of the aforementioned proposed robotic therapy

solutions require precomputed trajectories along which the

robot end-effector can be modulated through an impedance

controller in order to enhance or reduce motor errors [4],
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[8], [9]. Such an approach however, can be very tedious for

paths which do not have a direct mathematical representation

(such as a maze or the environment shown in Fig.1). Also,

implementing new paths require time-consuming robot repro-

gramming activities which are infeasible for most individuals

with medical backgrounds.

More intuitive robot programming methods have been

proposed to assist hand-writing and drawing skills. In [11],

desired robot trajectories were first recorded from an expe-

rienced user, and then a proportional-derivative controller

was used to provide motion guidance in unskilled users.

A solution to generate robot trajectories from images was

proposed in [12] where computer vision techniques (such as

edge detection and image segmentation) were used to extract

desired robot paths which were tracked by an impedance

controller to assist the users motion. Although these methods

are more user-friendly, and can extract even complex robot

paths, they rely on impedance controllers which cannot

render textured landscapes made of both convergent and

divergent fields (such as the environment shown in Fig.1).

Image-based force rendering that avoids tracking specific

robot paths have been proposed in the context of haptic

texture rendering. In [13], a scaled version of the image

gradient, computed through the finite difference method of

consecutive pixels, was used as desired force for the haptic

display. In [14], an M × M mask, centred on the end-

effector of the haptic display, was used to compute an average

gradient of the corresponding pixel. However, the image reso-

lution is critical for these methods: when the finite-difference

method is directly applied to the pixel intensity, the resultant

forces can be discontinuous and bumpy, especially for low

resolution images. Conversely, the computational burden of

run-time pixel processing for high resolution images makes

it difficult to perform real-time robot control. An image-

based programming method for robotics rehabilitation has

been proposed in [15] where a binary image (black and

white) was used to generate a custom 2D maze. At each time

step, the algorithm compared the coordinates of the subject

hand with the closest pixel in the image and a corresponding

haptic feedback was generated. A limitation of this work is

that although it uses a 2D drawing does not allow for the

generation of textured force fields, and requires a suitable

game engine for collision detection.

Rather than directly computing the gradient from the

image, our method regresses the image intensity through

non-linear function approximation and therefore has several

advantages when compared to the previous solutions. First,

the advantage of LWPR is that the regressed model will have

a computational burden depending on the complexity of the

image rather than on image resolution. In other words, more

local models (see sec. II-A) will be allocated in those regions

of the image with several details while only few local models

will be allocated in those regions with constant intensity

levels. Learning the image intensity map (as a potential

function) has the computational benefit of dealing only with

a scalar function approximator rather than with a vector-

valued one required to directly learn the image gradient.

Furthermore, because the regressed function is a smoothed

version of the input image the estimated gradient will be

smoother than that directly estimated from the image.

II. METHODS

The input to our algorithm is a gray-scale image which

contains the drawing of the haptic environment that the

experimenter or clinician/caregiver wishes to render. With a

gray-scale image there is the possibility of choosing among

256 intensity levels ranging from 0 (black) to 255 (white).

We assume that the image intensity represents a position-

dependent potential field that describes the energy landscape

of the robot end-effector. For instance, a convergent haptic

channel can be painted by drawing with a dark colour

ink over a lighter background. Similarly, a divergent force

field can be painted by using a lighter coloured ink over a

darker background. The width of the channel can then be

modulated by using different stroke sizes. By using different

combinations of intensity levels it is therefore possible to

segment the robot workspace into attractive and repulsive

areas (see Fig. 1).

A. Learning the potential field with LWPR

In theory, any function approximator can be used to regress

the energy function of the potential field. In this paper we

propose the use of locally weighted projection regression

(LWPR) [16], [17], a non-linear function approximator that

has been used extensively for robot control. LWPR is an

efficient algorithm which achieves nonlinear function approx-

imation by using a weighted sum of locally linear mod-

els. Such nonparametric regression technique learns rapidly

with second order learning methods using statistically sound

stochastic cross validation [16], [17]. It has a computational

complexity that is linear in the number of inputs, it automati-

cally allocates and tunes the linear models on a where-needed

basis. As such, the input space is efficiently covered (more

and narrower receptive fields are allocated where the input

space has a higher curvature), and the gradient of the learned

model can be derived analytically and computed efficiently

[17].

Let p = [x, y]T be a point of the robot workspace. The

LWPR output (or the estimated image intensity) at p is

computed as the combination of K weighted locally linear

models normalized by the sum of all weights [16]:

Φ̂(p) =

∑K

k=1
wk(p)Φ̄k(p)

∑K

k=1
wk(p)

(1)

where Φ̄k(p) = b0
k
+ bk

T (p − ck) is the output of the

k-th linear model and b0
k

and bk
T its regression parameters

representing the offset and the slope respectively.

For Gaussian weights (or receptive fields), wk(p) =
exp(−0.5(p − ck)

TDk(p − ck)) where Dk is a positive

definite distance matrix that regulates the region of influence
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of the k-th linear model, and the vector ck is the position of

k-th linear over the robot workspace. The goal of the training

process is to tune Dk and the regression parameters in order

to reduce the error between the predicted output Φ̂(p) and

the target image-intensity values Φ(p).
Before training, the input image is smoothed with a Gaus-

sian filter to reduce the roughness of low-resolution images.

For an N × N image, there are T = N2 pixels or training

samples. The image intensity levels Φm with m = 1, ..., T ,

represent the desired output, and are rescaled in the range

[0, 1] to facilitate the LWPR training [17]. The discrete image

coordinates (i, j) of the m-th pixel are linearly mapped into

robot workspace (or Cartesian) coordinates p
m

= (xm, ym)
with m = 1, . . . , T . The T remapped pixel coordinates, to-

gether with the T normalized pixel intensity Φm, are used as

training samples for the LWPR model: lwpr update(pm,Φm)
1. Several training cycles are used to tune the LWPR model.

A training cycle is characterised by a particular sequence of

input-output pair (pm,Φm)) which is then randomized for the

next cycle. The training is terminated when the normalized

mean square error (Eq. 2) is less than 0.01, or when 150

training cycles have been performed.

e =

∑T

i=1
(Φ̂i − Φi)

2

T
Var(Φ) (2)

where Var(Φ) is the variance of the normalized image inten-

sity values.

1) Parameters tuning: LWPR performance depends

strictly on the parameter setting chosen for the training [17].

For our particular approximation problem we found out that

the main parameters affecting the performance were: the

initial width of the recptive fields (init D) and the weight

activation threshold (w gen) below which a new receptive

field is allocated. For the images tested in this work, we set

init D= 5I where I is the 2× 2 identity matrix, w gen= .6
and diag only= 0 so as to adapt the receptive field width

over the course of learning. This setting represented a good

trade-off between the force field smoothness and computa-

tional burden. For both images tested in this work (see sec.

III) made up of 104 pixels, the LWPR algorithm allocated

less than 2500 local models. On a PC with a 3.40GHz

Intel(R) Core(TM) i5 Dual-core with 4 GB of RAM the

average computational time for the gradient estimation took

approximately 0.2 ms, and therefore suitable for real-time

applications.

B. Gradient Estimation and Robot Control

The gradient of the LWPR model (1) can be analytically

computed as shown in [17] with a significant computational

benefit when compared to finite difference method [19]. For

a given robot end-effector position p, we compute the image-

based force field F (p) through the gradient of the regressed

potential:

F (p) = −α∇Φ̂(p) (3)

1lwpr update is the training function of the LWPR library [17], [18].
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Fig. 1. (a) Image representation of an haptic environment characterized
by a T-shaped convergent channel, an attractive target (black circle) and a
repellent target (light gray circle). (b) The corresponding energy levels of
the potential field.

where ∇Φ̂(p) is computed with the LWPR function

lwpr predict J. [17], [18] The absolute value of the scalar

α modulates the strength of the force field as the potential

function can only take on values between 0 and 1. For the

same image, a negative sign of α would transform repellent

areas into attractive ones, and vice versa.

For a robot having n degrees-of-freedom whose end-

effector moves into a an m-dimensional task-space, the m×n

Jacobian matrix J maps joints velocities (q̇) into end-effector

velocities: ẋ = J q̇. The transposed Jacobian matrix can also

be used to map task-space forces into joint-space torques

[22].Therefore, once the task-space forces (F (p)) have been

estimated via the LWPR model, the corresponding motor

torques can be computed as:

τ = JT (F (p)−Bṗ) (4)

where the additional damping force −Bṗ is used for

stabilization purposes.

III. RESULTS

In this section we delineate the preliminary results for two

assistive or convergent force fields made of a SPIRAL and an

ARC respectively (see Fig2(a) and (e)). For the ARC image,

we could have drawn a black arc on a gray background.

However we decided to represent this environment with a

black circle with a superimposed white ellipse to validate

the possibility of generating textured force fields composed

of different gray-scale levels. Furthermore, it should be noted

that rendering the ARC environment with conventional robot

programming methods can be quite challenging and time

consuming.

These haptic shapes were selected in order to validate the

proposed controller along curved paths which are generally

difficult to implement with an image-based programming

method, but also have a long history in the field of human

motor control [20].

The 100 × 100 pixels PNG images (Fig.2(a) and (e))

were generated using the open source software Inkscape.

The spiral was drawn with a 5 pixels stroke size while the

circle with a 8 pixels stroke size. The images were smoothed

with a 2 × 2 Gaussian filter (see Fig.2(b)and(f)) and the
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pixels were remapped onto a 25 × 25[cm] workspace grid.

After training, LWPR generalization capabilities were tested
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Fig. 2. LWPR predictions. (a) and (e) Input images of 100×100 pixels. (b)
and (f) The input images are smoothed with a Gaussian filter, the intensity
levels rescaled in the range [0, 1], and the pixel coordinates are remapped into
Cartesian coordinates. (c) and (g) LWPR regressed potential and estimated
gradients (color bars) onto a 400×400 input grid. (d) and (h) Contour plots
for the LWPR regressed potentials.

onto a 400 × 400 grid with samples uniformly distributed

in the range 0 to 25 cm. Regressed potentials and estimated

gradients are shown in Fig.2(c) and (g) and, Fig.2(d) and (h)

show the contour plots of the regressed potential functions.

For both environments, the LWPR models capture both the

shape and the energy levels of the desired potential functions

(normalized pixel intensities). For the SPIRAL environment

the haptic channel has a gradient ranging from -3 to 3 N

(compare the color bar in in Fig.2(c)). The ARC environment

on the other hand, has a haptic channel with a gradient

ranging from -.5 to .5 N that increases from -2.5 to 2.5 N

in the proximity of the white ellipse (compare the color bar

in in Fig.2(c)). Thus, for the same α level (see Eq.3), the

haptic channel of the ARC will be less stiff than that of the

SPIRAL.

A. Shape recognition by blind-folded subjects

To validate the quality of the haptic rendering using our

approach we conducted a preliminary experiment with the H-

Man, a two degrees-of-freedom planar robotic manipulandum

designed for the rehabilitation of the upper extremity [6],

[21]. The aim of the experiment is to examine whether

blindfolded individuals are able to feel the force field, as

well as to locate and distinguish the two haptic shapes. For

both the environments we set B = 20I (in Eq. 4), where I is

the 2× 2 identity matrix, to add an isotropic damping action

to the estimated forces.

Two healthy participants naive to the purpose of the

experiment took part in the study. Subjects were asked to

recognize a shape consisting of a piece of non-intersecting

2D curve with a starting point and an ending point, but no

additional information was given regarding the type of shape.

Subjects were asked to first explore the robot workspace,

locate the position of the starting and ending points within

the shape, and to provide a verbal statement about the type

of shape once they felt confident with the shape they were

following. The scalar α (see Eq.3) was kept constant and

equal to 7 for the SPIRAL environment and 10 for the

ARC (as its haptic channel is weaker than the SPIRAL one

[compare colorbar in Fig.2(c) and (g)]).

At the beginning of each test the H-Man end-effector was

initialized at the bottom left corner of its workspace. The

two force fields were presented in opposite order for the

two subjects; subject A started with the ARC and subject

B with the SPIRAL (Fig.3 (a) and (c) respectively). For

subject A (see Fig.3(a)) we observed a wider exploration of

the workspace for the ARC environment (that was also the

participant first exposure to the experiment). By comparison

(see Fig.3(c)), the subject was able to quickly locate the spiral

and its hand movements were mainly confined along one

border of the haptic channel of the SPIRAL environment.

Subject B, who was first exposed to the SPIRAL (see

Fig.3(b)), quickly located the spiral by moving toward the

center of the workspace and the subject hand movements

were constrained inside spiral haptic channel until the end

of the experiment. By comparison (see Fig.3(d)), subject

B moved in and out from the channel however with hand

movements mainly confined around the shape. Fig.4(a) shows

the distribution of the hand velocities for both subjects and

environments. At each time step the norm of the hand velocity

was computed and the ksdensity Matlab function was used

for the plot. Both subjects explored at a lower speed during

the first exposure to the experiment (participant A-ARC

and participant B-SPIRAL) when compared to the second

exposition (participant A-SPIRAL and participant B-ARC),

suggesting more confident behaviour likely due to increased

task familiarity. Overall, subject B explored with a higher

hand speed than subject A. The force distribution as in Eq.4

delivered by the H-Man are shown in Fig.4(b). By moving at

higher speed, subject B experienced a wider range of forces

due to the damping component in Eq.4.
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Both subjects guessed ‘spiral’ for the SPIRAL environ-

ment, while subject B reported ‘backward C’ and subject

A ‘circle’ for the ARC environment. Subject A reported

that the starting and ending point were located in the same

position, indicating that his guess was due to proprioceptive

feeling. The time-to-guess is shown in Fig.5. Due to a

wider workspace exploration and to lower speed movements,

subject A took approximately 3.5 minutes to guess its first

shape (ARC), while subject B took less than 2 minutes to

guess the first shape (SPIRAL). A series of back-and-forth

confident movements after the shape was correctly guessed

are shown in Fig.6.
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Fig. 3. Hand paths of the two blindfolded subjects during the shape
recognition test. (a) and (c) Subject A performing the ARC and the SPIRAL
test respectively. (b) and (d) Subject B performing the SPIRAL and the ARC
test respectively. Most recent paths are in darker colors.
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Fig. 4. (a) Norm of the end-effector velocities distributions for each subject
and for each haptic environment. It is possible to notice that Subject A uses
a lower speed exploration strategy when compared to Subject B. (b) Norm
of the task-space robot forces (F (p)−Bṗ) distribution. Because subject B
moves faster than subject A, he experiences an higher level of robot forces
due to stabilizing damping force. The Matlab function ksdensity was used
for both plots.

IV. CONCLUSION

This paper proposes a novel method to convert 2D sketches

stored as gray-scale images into planar force fields which

are commonly used in robotics rehabilitation and haptics.

At the core of the algorithm is the assumption that the

image intensity levels represent an energy function distributed

over the robot workspace. The energy function is regressed
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Fig. 5. Time to guess (in minutes) the haptic shape.
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Fig. 6. Hand paths of the two blindfolded subjects after familiarizing with
the haptic shapes.

through LWPR so that the gradient of the regressed model

can be efficiently computed to generate the robot forces.

The task-space formulation of the proposed solution makes

it possible to generate planar force fields with any robotic

platform. This new approach is conceived as an intuitive robot

programming method for use by therapists and caregivers

with no or minimal programming experience, but who are

directly responsible for carrying out therapy regimes with

impaired or elderly participants. Although in this paper we

reported experiments that do not require visual feedback, it

should be noted that the input image can be easily imported

into conventional game engines used in rehabilitation robotics

and haptics. . The advantages of this feature is that it reduces

(or potentially eliminates) the additional programming time

required to develop a gaming environment.

To validate the quality of the rendered force field we

devised a preliminary experiment involving a haptic shape

recognition task. Both blindfolded participants were success-

ful in their shape estimations. As such, the proposed method

provides a promising avenue for future research, especially in

the field of active touch and sensorimotor training where the

type of movements are, for the most part, confined to point-

to-point reaching movements. For instance, future works

could address differences in terms of explorations patterns

and shape perception between convergent and divergent chan-

nels. In addition, it would certainly be worthwhile examining

differences in motor adaptation and explorations strategies

between abstract and conventional shapes (e.g. geometric

shapes, numbers, letters, etc.).

At the current stage some limitations of our implementa-

tion are worth noting: 1) the use of conventional software

for image editing does not provide an intuitive or transparent

means for users to understand how the drawing and its details
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(such as channels width, target size...) would scale up in the

robot workspace; 2) LWPR training parameters are currently

manually tuned by a trial-and-error process. Future works

will be devoted to the realization of an integrated software

interface which will allow the image painting over a grid that

is already scaled to the robot workspace. Last, the automatic

tuning of the LWPR parameters based on the extraction of

the finer details present in the drawing will be addressed. The

acceptability and easy of use of such interface by non-expert

users will be quantitatively evaluated.
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